Nuevos relojes atómicos

Los relojes atómicos son los más precisos que ha elaborado el hombre hasta el momento. Su funcionamiento se basa en la frecuencia de una vibración atómica. Un reloj atómico es un tipo de reloj que utiliza una frecuencia de resonancia atómica normal para alimentar su contador.
El primero fue construido en 1948 por la Oficina Nacional de Normalización (NIST) de los EEUU basándose en las ideas sobre un fenómeno extremadamente regular, la resonancia magnética molecular y atómica, del Nobel Isidor Isaac Rabi, aunque la precisión conseguida por el amoníaco (molécula utilizada por el prototipo del NIST) no era muy superior a los estándares de la época basados en osciladores de cuarzo.

Hoy los mejores patrones de frecuencia atómicos se basan en las propiedades físicas que tienen las fuentes de emisión de cesio. El primer reloj atómico de cesio fue construido en 1955 en el Laboratorio Nacional de Física (NLP), en Inglaterra. Sus creadores fueron Louis Essen y John V.L Parry.

Los físicos continúan experimentando con nuevas variaciones, como los másers de hidrógeno (Townes), los de bombeo óptico de rubidio (Kasler) o los recientemente propuestos de mercurio, que permitirían alcanzar mayor precisión. También se mejora constantemente la precisión de los de cesio con lásers para enfriar los átomos; la del último reloj de NIST, el NIST-F1, puesto en marcha en 1999, es del orden de un segundo en veinte millones de años.

En agosto de 2004 del NIST hicieron la primera demostración de un reloj atómico del tamaño de un circuito integrado. Esto representa un reloj cien veces menor que cualquier otro construido hasta la fecha y con un consumo de sólo 0,079 vatios.

En un extremo del reloj de cesio hay un horno con una placa de cesio del que se evaporan iones de este metal. Los iones se presentan en dos estados dependientes del spin del último electrón del cesio. Estos estados presentan una frecuencia energética de 9.192.631,770 Hz y en cada estado diferente los iones tienen propiedades magnéticas diferentes. Tras la evaporación, se utiliza un imán para separar los iones y descartar aquellos con mayor energía. Los iones con menor energía van a parar a una cámara.

Un radioemisor de microondas llena la cavidad de la cámara de forma uniforme con ondas radioeléctricas. Cuando la frecuencia de la onda radiada se acopla con la frecuencia de la transición hiperfina del cesio, los iones de cesio absorben la radiación y emiten luz. Una célula fotoeléctrica captura el momento exacto de la emisión; dicha célula tiene asociada una instrumentación electrónica que le conecta con el radioemisor y que ajusta la frecuencia del mismo.

Finalmente, conectado a dicha electrónica hay un contador que lleva el registro de veces que el radiotransmisor ha emitido una onda en la frecuencia del cesio y un ordenador hace los cálculos restantes hasta convertirlos en un formato legible o en una radiotransmisión de un pulso en el espectro radioeléctrico en que escuchan los aparatos receptores. Por supuesto, el verdadero reloj es el contador.




Para realizar la medición a través de estas partículas es necesario crear un campo electromagnético que no existe de forma natural en el Universo. El proceso se realiza dentro de una "trampa magneto-óptica", una esfera del tamaño de un melón en la cual se inyectan átomos de cesio y se propagan, encerrados en un campo magnético, seis rayos de luz láser. Wikipedia

Comentarios